Самое мощное топливо. Ракетные топлива: что Вы об этом знаете? Параметры ступеней многоступенчатой ракеты


В ракетных двигателях на основе жидкого топлива горючее и окислитель хранятся в отдельных резервуарах. Они подаются через систему труб, клапанов и турбонасосов в камеру сгорания, где соединяются и сгорают для получения тяги. Жидкостные ракетные двигатели являются более сложными, чем их аналоги на твердых типах топлива. Однако они имеют несколько преимуществ. При помощи регулирования потоков реагентов в камеру сгорания двигатель может быть дросселирован, остановлен или перезапущен.

Жидкое топливо, используемое в ракетной промышленности, можно разделить на три типа: углеводородное (на основе нефтепродуктов), криогенное и самовоспламеняющееся.

Топливо на основе нефтепродуктов представляет собой очищенную нефть и состоит из смеси сложных углеводородов. Примером такого ракетного топлива является один из видов керосина высокой степени очистки. Он, как правило, используется в сочетании с жидким кислородом в качестве окислителя.

Криогенное ракетное топливо в большинстве случаев представляет собой жидкий водород, смешанный с жидким кислородом. Из-за низких температур горючее трудно хранить в течение длительного времени. Несмотря на этот недостаток, жидкое ракетное топливо обладает преимуществом: при сгорании выделяется огромное количество энергии.

Самовоспламеняющееся ракетное топливо представляет собой двухкомпонентную смесь, которая возгорается при контакте с воздухом. Быстрый запуск двигателей, построенных на таком типе топлива, делает его идеальным выбором для систем маневрирования космических кораблей. Однако такое горючее очень легко воспламеняется, поэтому при работе с ним необходимы особые меры безопасности.

Твердое ракетное топливо

Конструкция двигателей на твердом ракетном топливе является довольно простой. Она состоит из стального корпуса, заполненного смесью из твердых соединений (топлива и окислителя). Эти компоненты горят с большой скоростью, выходя из сопла и создавая тягу. Воспламенение твердого ракетного топлива происходит в центре резервуара, а затем процесс переходит к боковым сторонам корпуса. Форма центрального канала определяет скорость и характер горения, обеспечивая тем самым способ управления тягой. В отличие от жидкостных реактивных двигателей, твердотельный двигатель не может быть остановлен после запуска. После начала процесса, компоненты будут гореть, пока не кончится топливо.

Есть два вида твердого топлива: однородное и композитное. Оба типа очень стабильны при обычных температурах, а также легко хранятся.

Разница между однородным и композитным топливом состоит в том, что первый тип представляет собой вещество одного типа – зачастую это нитроцеллюлоза. Композитные типы топлива состоят из гетерогенных порошков на основе минеральных солей.

Гибридное ракетное топливо

Ракетные двигатели, работающие на таком типе топлива, составляют промежуточную группу между твердотельными и жидкостными силовыми агрегатами. В таком типе двигателя одно вещество твердое, в то время как другое – в жидком состоянии. Окислитель, как правило, это жидкость. Основным преимуществом таких двигателей является то, что они имеют высокий коэффициент полезного действия. При этом сгорание топлива можно остановить или даже перезапустить двигатель повторно.

Аннотация

Учебно-методическое пособие предназначено для помощи специалистам АО «СП «Байтерек» в закреплении знаний по освоению своих функциональных обязанностей.

В работе рассматриваются ракетные топлива, сжатые газы, применя-

ющиеся на ракетных комплексах, их свойства, предлагается выбор ракетного топлива.

Учебно-методическое пособие позволяет закрепить знания по компонентам ракетного топлива и сжатым газам, которые во многом определяют технический облик КРК.

Аннотация 2

Принятые сокращения 4

1 Ракетные топлива 5

2 Сжатые газы и их свойства 13

3 Выбор ракетного топлива 16

4 Практическая часть 17

Контрольные вопросы 21

Литература 22

Принятые сокращения

Г – горючее

ДУ - двигательная установка

ИТО – испытательное технологическое оборудование

КА – космический аппарат

КГЧ – космическая головная часть

КРТ – компонент ракетного топлива

О – окислитель

РАН – российская академия наук

РБ – разгонный блок

РД – ракетный двигатель

РДТТ – ракетный двигатель твердого топлива

РКК – ракетно-космический комплекс

РН – ракета-носитель

РТ – ракетное топливо

СГ – сжатые газы

ТНТ – тринитротолуол

ТТЗ – тактико-техническое задание

Ракетные топлива

Ракетное топливо во многом определяет технический облик, тактико-технические и эксплуатационные характеристики всего РКК, а также формирует систему эксплуатации и систему обеспечения безопасности личного состава.

В двигательных установках современных РН, КА и РБ в качестве источников энергии используется энергия химических реакций компонентов 1 химического ракетного топлива 2 . Химическое ракетное топливо не только в на-стоящее время, но и в ближайшем будущем будет основным видом РТ.

Ракетные топлива состоят из двух принципиально различных компонентов: окислителя (О) и горючего (Г).

Окислитель - компонент РТ, состоящий преимущественно из окисли-тельных элементов и служащий для окисления горючего в РД.

Горючее - компонент РТ, состоящий преимущественно из горючих элементов и вступающий в химическую реакцию окисления (горения) при взаимодействии с окислителем в РД.

Химические ракетные топлива классифицируются по следующим признакам:

а) по агрегатному состоянию: жидкие и твердые;

б) по числу компонентов: однокомпонентные (унитарные); двухкомна­тные и многокомпонентные;

в) по способности к воспламенению: несамовоспламеняющиеся и самовоспламеняющиеся;

г) по температуре кипения: низкокипящие (криогенные) и высококипящие.

______________________

1 Компонент [лат. сотропепз - составляющий]ракетного топлива (КРТ) - отдельно хранимая и подводимая к РД, отличающаяся по составу, часть ракет ного топлива.


2 Химическое ракетное топливо - ракетное топливо, которое в результате термических реакций окисления, разложения или рекомбинации образует высокотемпературные продукты, создающие реактивную тягу при истечении из РД

Жидкие РТ позволяют получать наибольший удельный импульс, осуществлять регулирование тяги и многократные пуски ракетного двигателя. Жидкие РТ могут быть унитарными (однокомпонентными), но, чаще всего, двухкомпонентными.

Твердые РТ (ТРТ) по физической природе подразделяются на два клас-. оаллиститные (пороха) и смесевые РТ.

Баллистшпные ТРТ представляют собой твердые растворы однородных деств, молекулы которых содержат горючие и окислительные элементы.

Они применяются для вспомогательных ракетных двигателей (системы разде­ления ступеней, тормозные двигательные установки спускаемых аппаратов и др.).

Баллиститные ТРТ воспламеняются от маломощного источника энергии - достаточно искры от пиропатрона, пирозапала и пр.

Смесевые ТРТ представляют собой механические неоднородные смеси окислителя и горючего. В качестве окислителя используются неорганические

соединения, например, перхлорат аммония NH 4 CIO 4 , в качестве горючего -синтетические полимерные органические соединения, например, полиурета-

новый каучук. Для улучшения энергетических характеристик в качестве горю­чего добавляют порошкообразный металл, например, алюминий, магний и др.

Смесевые ТРТ воспламеняются только от мощного источника энергии (воспламенителя) и устойчиво горят только при наличии давления в камере сгорания (не менее 2-3 МПа).

Наличие на борту РН и КА твердых ракетных топлив предъявляет

повышенные требования по защите РН и КА от статического электричества и от механических ударов самих РДТТ.

Унитарное РТ - однокомпонентное ракетное топливо или однородная смесь (раствор) нескольких химически не взаимодействующих компонентов.

К унитарным РТ относятся перекись водорода, гидразин и др. Реакция разложения унитарных РТ происходит в реакторах при наличии катализатора. Унитарные РТ применяются только во вспомогательных устройствах, напри­мер, в газогенераторах привода турбин ТНА и в ДУ систем ориентации и ста­билизации КА.

Самовоспламеняющееся топливо - двухкомпонентное жидкое РТ, вос­пламеняющееся при обычной температуре в случае контакта окислителя и го­рючего. Период задержки воспламенения составляет не более 3 - 8 мс.

Криогенное РТ [греч. krios -холод; genes - рождающий] - жидкое РТ, хо­тя бы один из компонентов которого является криогенным.

Криогенный компонент РТ- низкокипящий КРТ в виде сжиженного га­за с температурой кипения, лежащей при нормальном давлении в области криогенных температур (ниже 120 К или -153 °С). В качестве криогенных КРТ в настоящее время применяются жидкий кислород и жидкий водород.

Основные физико-химические свойства жидких КРТ приведены в таблице 2. Компоненты РТ обладают рядом свойств, которые требуют соблюдения не только специфических мер и правил безопасности при работе с ними, но и создания особых условий эксплуатации. К этим свойствам относятся:

токсичность;

пожарная опасность (пожароопасность) и взрывобезопасность;

агрессивность;

температуры кипения и замерзания.

Токсичность КРТ - способность КРТ оказывать вредное действиеначеловека, животных и растения. Показателем токсичности может служить

предельно допустимая концентрация (ПДК) 1 КРТ в воздухе рабочей зоны

По степени токсичности вещества, в том числе и КРТ, делятся на четыре класса

1-й класс - чрезвычайно опасные ПДК < 0,0001 мг/л (г/м 3);

2-й класс - высоко опасные ПДК = (0,0001-0,001) мг/л (г/м 3);

3-й класс - умеренно опасные ПДК = (0,0011-0,01) мг/л (г/м 3)

4-й класс - малоопасные ПДК > 0,01 мг/л (г/м).

Таблица 2.

Физико-химические свойства КРТ

В общем случае нагрев рабочего тела присутствует как составляющая рабочего процесса теплового ракетного двигателя. Причем наличие источника теплоты - нагревателя формально обязательно (в частном случае его тепловая мощность может равняться нулю). Тип его можно характеризовать видом энергии, переходящей в теплоту. Таким образом получаем признак классификации, по которому тепловые ракетные двигатели по виду энергии, преобразуемой в тепловую энергию рабочего тела, делятся на электрические, ядерные (рис.10.1.) и химические (рис 13.1, уровень 2).

Схема, конструкция и достижимые параметры ракетного двигателя на химическом топливе во многом определяются агрегатным состоянием ракетного топлива. Ракетные двигатели на химическом топливе (в зарубежной литературе иногда называемые химическими ракетными двигателями) по этому признаку делятся на:

жидкостные ракетные двигатели - ЖРД, компоненты топлива которых в состоянии хранения на борту - жидкость (рис. 13.1, уровень 3; фото, фото),

ракетные двигатели твердого топлива - РДТТ (рис. 1.7, 9.4, фото, фото),

гибридные ракетные двигатели - ГРД, компоненты топлива которых находятся на борту в разных агрегатных состояниях (рис. 11.2).

Очевидным признаком классификации двигателей на химическом топливе является число компонентов ракетного топлива.

Например, ЖРД на однокомпонентном или на двухкомпонентном топливе, ГРД на трехкомпонентном топливе (по зарубежной терминологии - на трибридном топливе) (рис. 13.1, уровень 4).

По конструктивным признакам возможна классификация ракетных двигателей с выделением десятков рубрик, но основные отличия в выполнении целевой функции определяются схемой подачи компонентов в камеру сгорания. Наиболее характерна классификация по этому признаку ЖРД.

Классификация ракетных топлив.

РТ подразделяются на твердые и жидкие. Твердые ракетные топлива имеют ряд преимуществ перед жидкими, они длительно хранятся, не воздействуют на оболочку ракеты, не представляют опасности для работающего с ним персонала в связи с низкой токсичности.

Однако взрывной характер их горения создает трудности в их применении.

К твердым ракетным топливам относятся баллистные и кордитные пороха на основе нитроцеллюлозы.

Жидкостный реактивный двигатель, идея создания которого принадлежит К.Э.Циолковскому, наиболее распространен в космонавтике.

Жидкие РТ могут быть однокомпонентными и двухкомпонентными (окислитель и горючие).

К окислителям относятся: азотная кислота и окислы азота (двуокись, четырехокись), перекись водорода, жидкий кислород, фтор и его соединения.

В качестве горючего используется керосины, жидкий водород, гидразины. Наиболее широко используется гидразин и несимметричный диметилгидразин (НДМГ).

Вещества, входящие в состав жидких РТ обладают высокой агрессивностью и токсичностью к человеку. Поэтому перед медицинской службой стоит проблема проведения профилактических мероприятий по защите личного состава от острых и хронических отравлений КРТ, организации оказания неотложной помощи при поражениях.

В связи с этим и изучаются патогенез, клиника поражений, разрабатываются средства оказания неотложной помощи и лечения пораженных, создаются средства защиты кожи и органов дыхания, устанавливаются ПДК различных КРТ и необходимые гигиенические нормы.

Ракеты-носители и двигательные установки различных космических аппаратов являются преимущественной областью применения ЖРД.

К преимуществам ЖРД можно отнести следующие:

Самый высокий удельный импульс в классе химических ракетных двигателей (свыше 4 500 м/с для пары кислород-водород, для керосин-кислород - 3 500 м/с).

Управляемость по тяге: регулируя расход топлива, можно изменять величину тяги в большом диапазоне и полностью прекращать работу двигателя с последующим повторным запуском. Это необходимо при маневрировании аппарата в космическом пространстве.

При создании больших ракет, например, носителей, выводящих на околоземную орбиту многотонные грузы, использование ЖРД позволяет добиться весового преимущества по сравнению с твёрдотопливными двигателями (РДТТ). Во-первых, за счёт более высокого удельного импульса, а во-вторых за счёт того, что жидкое топливо на ракете содержится в отдельных баках, из которых оно подается в камеру сгорания с помощью насосов. За счет этого давление в баках существенно (в десятки раз) ниже, чем в камере сгорания, а сами баки выполняются тонкостенными и относительно лёгкими. В РДТТ контейнер топлива является одновременно и камерой сгорания, и должен выдерживать высокое давление (десятки атмосфер), а это влечёт за собой увеличение его веса. Чем больше объём топлива на ракете, тем больше размер контейнеров для его хранения, и тем больше сказывается весовое преимущество ЖРД по сравнению с РДТТ, и наоборот: для малых ракет наличие турбонасосного агрегата сводит на нет это преимущество.

Недостатки ЖРД:

ЖРД и ракета на его основе значительно более сложно устроены, и более дорогостоящи, чем эквивалентные по возможностям твёрдотопливные (несмотря на то, что 1 кг жидкого топлива в несколько раз дешевле твёрдого). Транспортировать жидкостную ракету необходимо с бо́льшими предосторожностями, а технология подготовки её к пуску более сложна, трудоемка и требует больше времени (особенно при использовании сжиженных газов в качестве компонентов топлива), поэтому для ракет военного назначения предпочтение в настоящее время оказывается твёрдотопливным двигателям, ввиду их более высокой надёжности, мобильности и боеготовности.

Компоненты жидкого топлива в невесомости неуправляемо перемещаются в пространстве баков. Для их осаждения необходимо применять специальные меры, например, включать вспомогательные двигатели, работающие на твёрдом топливе или на газе.

В настоящее время для химических ракетных двигателей (в том числе и для ЖРД) достигнут предел энергетических возможностей топлива, и поэтому теоретически не предвидится возможность существенного увеличения их удельного импульса, а это ограничивает возможности ракетной техники, базирующейся на использовании химических двигателей, уже освоенными двумя направлениями:

Космические полёты в околоземном пространстве (как пилотируемые, так и беспилотные).

Исследование космоса в пределах Солнечной системы с помощью автоматических аппаратов (Вояджер, Галилео).

омпоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты (см. Формула Циолковского), которые при недостаточно высоком значении удельного импульса могут оказаться нереальными. В таблице 1 приведены основные характеристики некоторых сочетаний компонентов жидкого топлива.

Помимо удельного импульса при выборе компонентов топлива, решающую роль могут сыграть и другие показатели свойств топлива, в том числе:

Плотность, влияющая на размеры баков компонентов. Как следует из табл. 1, водород является горючим, с самым большим удельным импульсом (при любом окислителе), однако он обладает крайне низкой плотностью. Поэтому первые (самые большие) ступени ракет-носителей обычно используют другие (менее эффективные, но более плотные) виды горючего, например, керосин, что позволяет уменьшить размеры первой ступени до приемлемых. Примерами такой «тактики» служат ракета Сатурн-5, первая ступень которой использует компоненты кислород/керосин, а 2-я и 3-я ступени - кислород/водород, и система Спейс Шаттл, в которой в качестве первой ступени использованы твёрдотопливные ускорители.

Температура кипения, которая может накладывать серьёзные ограничения на условия эксплуатации ракеты. По этому показателю компоненты жидкого топлива подразделяют на криогенные - охлаждённые до крайне низких температур сжиженные газы, и высококипящие - жидкости имеющие температуру кипения выше 0 °C.

Криогенные компоненты не могут долго храниться, и транспортироваться на большие расстояния, поэтому они должны изготовляться (по крайней мере сжижаться) на специальных энергоёмких производствах, находящихся в непосредственной близости от места старта, что делает пусковую установку совершенно немобильной. Помимо этого, криогенные компоненты обладают и другими физическими свойствами, предъявляющими дополнительные требования к их использованию. Например, наличие даже незначительного количества воды или водяного пара в ёмкостях со сжиженными газами приводит к образованию очень твёрдых кристаллов льда, которые при попадании в топливную систему ракеты воздействуют на её части как абразивный материал и могут стать причиной тяжёлой аварии. За время многочасовой подготовки ракеты к старту на ней намерзает большое количество инея, превращающегося в лёд, и падение его кусков с большой высоты представляет опасность для персонала, занятого в подготовке, а также для самой ракеты и стартового оборудования. Сжиженные газы после заправки ими ракеты начинают испаряться, и до момента старта их нужно непрерывно пополнять через специальную систему подпитки. Избыток газа, образующегося при испарении компонентов, необходимо отводить таким образом, чтобы окислитель не смешивался с горючим, образуя взрывчатую смесь.

Высококипящие компоненты гораздо более удобны при транспортировке, хранении и оперировании с ними, поэтому в 50е годы ХХ в они вытеснили криогенные компоненты из области военного ракетостроения. В дальнейшем эта область всё в большей степени стала заниматься твёрдым топливом. Но при создании космических носителей криогенные топлива пока сохраняют своё положение за счёт высокой энергетической эффективности, а для выполнения маневров в космическом пространстве, когда топливо должно сохраняться в баках месяцами, а то и годами, наиболее приемлемыми являются высококипящие компоненты. Иллюстрацией такого «разделения труда» могут служить ЖРД, задействованные в проекте Аполлон: все три ступени ракеты-носителя Сатурн-5 используют криогенные компоненты, а двигатели лунного корабля, предназначенные для коррекции траектории и для маневров на окололунной орбите, - высококипящие несимметричный диметилгидразин и тетраоксид диазота.

Химическая агрессивность. Этим качеством обладают все окислители. Поэтому наличие в баках, предназначенных для окислителя, даже незначительных количеств органических веществ (например, жировых пятен, оставленных человеческими пальцами) может вызвать возгорание, вследствие которого может загореться материал самого бака (алюминий, магний, титан и железо очень энергично горят в среде ракетного окислителя). Из-за агрессивности окислители, как правило, не используются в качестве теплоносителей в системах охлаждения ЖРД, а в газогенераторах ТНА, для снижения тепловой нагрузки на турбину рабочее тело перенасыщается горючим, а не окислителем. При низких температурах жидкий кислород является, пожалуй, самым безопасным окислителем, потому, что альтернативные окислители, такие как тетраоксид диазота или концентрированная азотная кислота вступают в реакцию с металлами, и хотя они являются высококипящими окислителями, которые могут подолгу храниться при нормальной температуре, время службы баков, в которых они находятся, ограничено.

Токсичность компонентов топлива и продуктов их горения является серьёзным ограничителем их использования. Например, фтор, как следует из табл.1., как окислитель, более эффективен, чем кислород, однако в паре с водородом он образует фтороводород - вещество крайне токсичное и агрессивное, и выброс нескольких сотен, тем более, тысяч тонн такого продукта сгорания в атмосферу при запуске большой ракеты, сам по себе является крупной техногенной катастрофой, даже при удачном запуске. А в случае аварии, и разлива такого количества этого вещества, ущерб не поддаётся учёту. Поэтому фтор не используется в качестве компонента топлива. Токсичными являются и тетраоксид азота, азотная кислота и несимметричный диметилгидразин. В настоящее время предпочитаемым (с экологической точки зрения) окислителем является кислород, а горючим - водород, за которым следует керосин.

Твердые ракетные топлива применяются в ракетных двигателях, ГГ, прямоточных и ракетно-прямоточных двигателях и гидроракетных двигателях. Их можно разделить на две группы: баллиститные (гомогенные), например, Н и НМ-2 (табл. 1.8) и смесевые (гетерогенные).

Смесевые твердые топлива содержат 20…30% связующего каучукообразного или смолообразного вещества, 60…80% окислителя и до 20% алюминия; имеются также составы, содержащие компоненты баллиститных и смесевых топлив. Возможно также применение в качестве горючего гидридов легких и тяжелых металлов. В качестве окислителей обычно применяют перхлорат аммония; возможно применение других твердых солей хлорной и азотной кислот, богатых кислородом (табл. 1.9).

В качестве горюче-связующего используются каучуки (полисульфидный, полиуретановый и др.), полимеры (полиэфирные, фенольные и эпоксидные смолы, полиизобутилен и др.), тяжелые нефтепродукты (асфальт, битум и др., табл. 1.10). В смесевые твердые топлива иногда добавляют также октоген и гексоген. Некоторые составы (с известной долей условности) смесевых твердых топлив США и их характеристики приведены в табл. 1.11 .

Обычные баллиститные и смесевые топлива не удовлетворяют требованиям, предъявляемым к газогенераторным топливам. Поэтому разрабатывают специальные газогенераторные составы топлив с низкой температурой горения (см. последнюю колонку табл. 1.11), ограниченной сверху (жаропрочностью материалов клапанов, турбинных лопаток и других элементов проточной части) и снизу (устойчивостью горения топлива). Кроме того, ГГ иногда должны работать длительное время, и топливо должно иметь малую скорость горения. Для регулируемых ГГ предложен состав топлива, у которого скорость горения уменьшается с ростом давления ( <0). Дополнительные требования могут предъявляться и к составу продуктов сгорания топлив для ГГ: отсутствие конденсированной фазы, коэффициент избытка окислителя должен быть не более единицы (обычно). Смесевые топлива применяют и в воспламенительных ГГ (двигателях запуска).

К смесевым твердым топливам можно отнести пиротехнические составы. Пиротехнические составы применяются как наполнители воспламенительных устройств и пироэнергодатчиков; возможно их применение и в ГГ.

Основные компоненты, входящие в пиротехнические составы, можно разбить на следующие группы (табл. 1.12):

1.Окислители – перхлорат калия KCIO , нитраты натрияNaNO , калияKNO , барияBa (NO , перекись и хромат барияBaO и др.

2.Горючие – металлы (алюминий, магний, цирконий, бор, титан) и сплавы (алюминиево-магневый, циркониево-никелевый), неметаллы (фосфор, углерод и сера), неорганические соединения (сульфиды, фосфиды, силициды и др.), органические соединения.

Таблица 1.9

Характеристики твердых окислителей

Окислитель

Химическая формула

Плотность, г/см

Перхлорат калия

Перхлорат аммония

Перхлорат лития

Перхлорат нитрония

Нитрат калия

Нитрат аммония

Нитрат лития

KCIO

Li CIO

Li NO

Таблица 1.10

Стехиометрическое отношение при горении в кислороде, кг/кг

Тепловой эффект реакции сNH , кДж/г

Каучук бутадиен-стирольный

Каучук полиуретановый

Смола эпоксидная

Полиметилметакрилат

Алюминий

3.Цементаторы (связующие) – органические полимеры, обеспечивающие механическую прочность пиротехнических составов (идитол, канифоль, эпоксидные смолы, каучуки, этилцеллюлоза).

4. Другие добавки, играющие роль ускорителей или замедлителей горения или уменьшающие чувствительность составов к трению (флегматизаторы).

Для воспламенения смесевых твердых топлив с высоким содержаниемNH применяют пиротехнические смеси:KCIO - 26…50%,Ba (NO - 15…17%, циркониево-никелевый сплав (50/50) – 32…54%, этилцеллюлоза – 3% (патент США).

В воспламенительных устройствах применяют пиротехнические составы в виде прессованных таблеток. Плотность во многом определяется давлением прессования и колебания в пределах 1,3…2,8 г/см . удельная теплоемкость – 0,8…1,25 Дж/(кг*К), теплопроводность – 62,8…104,7 Вт/(м*К).

Таблица 1.12

Теплотворная способность пиротехнических составов

при стехиометрическом соотношении компонентов

Окислитель

Теплотворная способность, кДж/кг

Бор и алюминий

Дымный порох

Сплав циркония с никелем

Циркониево-никелевый сплав с добавлением бора и алюминия

Алюминий

PbCrO

KClO

Ba(NO

KClO

(C )n

KClO

Скорость горения пиротехнических составов в условиях их работы в воспламенительном устройстве при обдуве таблеток высокотемпературными продуктами сгорания представляется в видеu =map , гдеm ,a ,v – эмпирические коэффициенты.

Пиротехническими твердыми топливами называют также составы с большим количеством металлического горючего (более 50%) и солями неорганическими кислот в качестве окислителя; они предназначены для ГГ ракетно-прямоточных двигателей (РПД).

Заряд смесевого ТРТ может быть выполнен в виде блока (блоков), таблеток или порошков.

В качестве экспериментальных порошковообразных горючих использовали алюминий, двойной декаборан алюминия, диборид бора и циркония, полиэтилен и т.п., а в качестве окислителя – перхлорат аммония, нитрат аммония и др. Частицы имели размер от 2 до 2000 мкм. В качестве флюидизирующих газов использовались инертные (азот), окислительные (воздух, кислород) и горючие (водород, метан).

Возможны следующие способы подачи псевдожидкости из бака в камеру сгорания: с помощью сжатого газа, поршня, винтового насоса и струйного насоса. Порошкообразные горючие применяются в комбинированных стендовых ГГ, позволяющих в широких пределах варьировать давление, температуру и состав продуктов сгорания с целью изучения воздействия многофазных потоков на материалы.

Порошкообразным топливом является дымный ружейный порох (ДРП) с диаметром зерна 0,15…1,25 мм и крупнозернистый дымный порох (КЗДП) с диаметром зерна 5,1…10,2 мм; состав в %: нитрат калия – 74; древесный уголь – 15,6; сера – 10,4; температура горения 2600К; расходный комплекс 1200 м/с.

Плотность зерна ДРП 1,75 г/см , насыпная плотность ДРП 0,9…1,15 г/см , минимальное давление устойчивого горения 0,1 МПа, температурная чувствительность =0,005 1/ С.

Зависимость скорости горения от давления имеет вид

u =1,37*(p /98100) .

Зажигание твердого ракетного топлива происходит при воздействии:

1.потока тепловой энергии (радиационный, контактный и конвективный нагрев);

2.потока химически высокоактивных газов или жидкостей вызывающих при контакте с поверхностью твердого топлива гетерогенную экзотермическую реакцию;

3.механического удара и трения.

Фактический процесс воспламенения в реальном РДТТ сложен. К числу главных трудностей при его изучении относятся проблемы определения управляющего механизма, выбора критерия воспламенения, определения химической кинетики предшествующих горению реакций, а также гетерогенный характер смесевых твердых топлив. При проведении опытов за начало воспламенения принимают:

1.первое появление пламени, регистрируемое фотографическим путем или фотоэлементом;

2.резкое изменение показаний термопары;

3.наступление уноса массы топлива.

Таблица 1.13

Механические характеристики ТРТ

Параметр

баллиститное

смесевое

Предел прочности, Н/мм

Модуль упругости, Н/мм

Коэффициент Пуассона

Эксплуатационный свойства твердых топлив определяются их физическими, механическими (табл. 1.13), теплофизическими (табл. 1.14), химическими характеристиками, а также физико-химическими характеристиками продуктов сгорания. Наряду с энергетическими, прочностными, теплофизическими показателями твердое ракетное топливо характеризуется взрывобезопасностью, чувствительностью к удару и трению, степенью токсичности и дымности продуктов сгорания, технологичностью изготовления и снаряжения, стабильностью физических и химических характеристик во всем объеме заряда (особенно на границах) при всех условиях эксплуатации.

Таблица 1.14

Теплофизические характеристики ТРТ

Теплоемкость, Дж/г*К

Коэффи циент теплопроводности, Вт/м*К

Коэффи циент линейного расширения 1/К

Эксплуатационный интервал температур, С

Максимальная температура хранения, С

HM-2

HES-4016

ANB-3066

TP-Q-03011

1.3 СОНОВНЫЕ ЭЛЕМЕНТЫ КОНСТРУКЦИИ

Стартовая масса ракетыm , имеющейn ступеней, связана с максимальной дальностью полетаL приближенным соотношением m ,

гдеm - масса полезной нагрузки; /m ;I - среднее значение пустотного удельного импульса;А иа – коэффициенты, значения которых в первом приближении составляютА =407,а =1/3 при 300 км 6000 км; А=825, а=1/4 при 6000 км 12000 км.

Причем в диапазонеL 500 обычноn =1, в диапазоне 500 км 5000 кмn =2, в диапазоне 5000 км 12000 кмn =3.

Оптимальный относительный запас топлива )).

Учет потерь скорости на преодоление сил гравитации и прохождение плотных слоев атмосферы в первом приближении приводит к соотношениям (n =2; 3):

; =(1,08…1,12) ;

Время работы ступениt связано с начальной, задаваемой тяговооруженностьюn t = (при условииm const ).

Для каждой ступени по известным иm находятся основные проектные параметры, в качестве которых для многоступенчатых ракет принято считать диаметр ступени, массу топлива, давление в двигателе, степень расширения сопла, длину сверхзвучной части, длину утопленной части, время работы (табл. 1.15).

Таблица 1.15

Параметры ступеней многоступенчатой ракеты

Параметр

Первая ступень

Вторая и третья ступень

Номинальное давление в камере, МПа

Степень расширения сопла,F

Относительная длина утопленной части сопла

Ограничение на диаметр выходного сечения сопла

Максимальный уровень потребных управляющих сил, %

Начальная тяговооруженность

0,75D

10 …12

D

5…8 (вторая);

1…1,5 (третья);

3…3,5 (вторая);

3,5…4 (третья)

*D – диаметр двигателя.

На долю двигателей приходится 80…90% массы всей твердотопливной ракеты, и конструктивные особенности РДТТ во многом определяют конструктивную схему ракеты и ее основные технические характеристики. В свою очередь, конструктивные особенности РДТТ в основном определяются (табл. 1.16):

формой и принципиально-конструктивной схемой корпуса;

формой заряда твердого топлива, способом его крепления в корпусе;

числом и компоновкой сопел;

типом и компоновкой устройств создания управляющих усилий;

устройством узла отсечки тяги.

1 .3.1 КОРПУС И СОПЛО РАКЕТЫ

Корпус и сопло представляет собой полую многоблочную (см. рис. 1.1) или сборную односекционную (многосекционную) оболочку цилиндрической формы, закрытую с торцев передним и задним днищами. Корпуса могут иметь и другую форму, например, шаровую, эллипсообразную. Днища выполняются монолитно с цилиндрической частью и отдельно. Внутреннее строение корпуса определяется конструкцией заряда твердого топлива.

Таблица 1.16

Характеристики различных схем РДТТ

Схема РДТТ

Удельный импульс, м/с

Время работы, с

Баллиститное

Смесевое

Смесевое

Многошашечный

Вкладной

Скрепленный

~ 2000

~ 2400

~ 2800

~60

Силовые оболочки типа «кокон» изготавливаются из композиционного материала методом спиральной намотки на оправку с выполнением днищ вместе с цилиндрической частью оболочки.

Толщина оболочки корпуса в местах перехода днища в цилиндрическую часть определяется по формуле

гдер - максимальное давление в двигателе;D – внутренний диаметр цилиндрической части обечайки;d - диаметр полюсного отверстия; - предел прочности на растяжение стеклоленты.

Равнопрочная цилиндрическая оболочка получается при = 2…3(d , где - толщина кольцевых слоев; - толщина спиральных слоев.

Толщина днища в заднем месте

где - угол намотки.

Стыковочные юбки (см. рис. 1.1) изготавливаются намоткой заодно с корпусом, и в них вмотаны закладные детали фланцев. Стыковочные юбки являются частью конструкции ракеты и должны выдерживать комбинированные нагрузки: по оси (сжатие и изгиб), сдвиг и кручение.

Цилиндрическая часть силовой оболочки может быть изготовлена методом продольно-поперечной намотки на оправку.

Толщина стенки оболочки корпуса определяется по формуле

D /(2),где [- предел прочности стеклопластика (0,1…1,1 ГПа);n – запас прочности (1,35…1,5). Эта формула справедлива, когда на два слоя окружных лент наносят один слой продольных лент.

Силовые оболочки выполняются без единиц с утолщением по обоим торцам с последующей их механической обработкой для подготовки мест соединения с металлическими днищами.

Металлические обечайки корпуса

Подразделяются по форме на цилиндрические, конические и сферические, а по технологии изготовления – на сварные (с кольцевыми, спиральными и продольными швами) и бесшовные (раскатные и цельнотянутые).

Комбинированные обечайки корпуса представляют собой металлические обечайки, усиленные наружной оплеткой из стеклонитей или других высокопрочных армирующих материалов, которые выполнены с определенным натяжением, создающим в слое оплетки до нагружения оболочки напряжения. Если оплетки принимает на себя половину окружной нагрузки, действующей на всю цилиндрическую обечайку, тогда отношение толщин металлической оболочки и оплетки является оптимальным. При этом толщина металлической обечайки определяется из условия обеспечения прочности в осевом направлении D /4, а недостаточная прочность в окружном направлении компенсируется оплеткой с толщиной, равной D /4. В этих формулах и - допустимые напряжения в металлической обечайке и армирующей оплетке соответственно.

Соединения элементов конструкции обеспечиваются с помощью специальных узлов, основные требования к которым сводится к обеспечению прочности и герметичности соединений при минимальных массе и габаритных размерах применительно к каждому конкретному случаю с учетом материалов соединяемых элементов и видов нагружения.

При одном и том же типе разъемного соединения возможно огромное число модификаций кольцевых уплотнений на стыке. Основным элементом уплотнений является резиновое кольцо. Размеры резиновых колец и канавок под них, а также рекомендации по применению резиновых уплотнительных колец даются в соответствующих общесоюзных и отраслевых стандартах (ГОСТ 9833-73).

Всопловом блоке РДТТ может содержаться различное число сопел: одно (соосное с двигателем или повернутое относительно оси двигателя на угол 90 ), два (поворотных) или четыре, а также 10…20, наклоненных к плоскости сопловой крышки, например, у турбореактивных снарядов (см. рис. 1.2).

Сопло может быть круглым и кольцевым (последние пока не нашли применения в РДТТ).

Схема РДТТ с одним центральным соплом характеризуется наилучшими энергомассовыми характеристиками. Для сокращения длины двигателя сопло может быть уплотнено в корпус (см. рис. 1.1). В двигателях ракет, в которых РДТТ располагают в близи центра ракеты, вход в сопло выполняют в виде удлиненной трубы. Габаритные размеры сопла изменяемой геометрии в рабочем положении превышают исходные, таким является раздвижное сопло (рис. 1.3).

Рис. 1.3 Поворотное раздвижное сопло:

1 – заделка привода; 2 – привод; 3 – раздвижные части.

Многосопловая схема позволяет организовать управление ракетой и в двух плоскостях, и по крену. Однако в этом случае ухудшаются условия входа продуктов сгорания в сопло, увеличивается унос теплозащитных покрытий на входе в сопло и в раструбе.

Рассмотрены также конструктивные схемы РДТТ с кольцевым соплом, подвижное центральное тело которого позволяет регулировать тягу, и с тарельчатым соплом (топливо безметалльное), Внешний участок расширяющейся части которого образован задним днищем двигателя (это же сопло с заглушенным минимальным сечением служит также передним днищем нижней ступени).

Особенности сопел отсечки тяги РДТТ см. в п. 1.3.5.

Материалытепловой защиты РДТТ представляют собой искусственные изотропные и анизотропные композиции, обеспечивающие тепловую изоляцию несущей конструкции и прогнозируемый унос поверхностного слоя.

С некоторой степенью условности материалы тепловой защиты можно разделить на облицовки, теплоизоляционные слои и насадки (рис.1.4). Облицовки обеспечивают заданную стойкость первого слоя тепловой защиты тракта от разрушения при взаимодействии с двухфазным рабочим телом; при этом может происходить унос материала с прогнозируемой скоростью.

Теплоизоляционные слои обладают низкой проводимостью тепла, но подвержены существенному уносу уже при незначительном уровне конвекции рабочего тела.


Рис. 1.4 Тепловая защита:

УУКМ – углерод-углеродные композиционные материалы; УСП – угле- и стеклопластики; ТЗМ – теплозащитные материалы; НО – неориентированные материалы; О – ориентированные материалы.

Насадки концевых частей сопел одновременно выполняют функции и тепловой защиты, и несущей конструкции. В зависимости от уровня воздействия обтекающего потока один и тот же материал может выполнять как функции облицовки, так и изолятора. Например, геометрия заряда современного РДТТ с центральным утопленным соплом исключает возникновение больших скоростей обтекания элементов корпуса, материалы тепловой защиты подвержены в основном нагреву излучением. Тогда тепловую защиту корпуса выполняют из легких эластичных низкотеплопроводных материалов на основе каучуков и резин без армировки наполнителями. А для четырехсопловой конструкции РДТТ в качестве тепловой защиты сопловой крышки, подверженной воздействию высокоскоростной многофазной струи из канала заряда, служит материал, выполненный из армированных асбестом или кремнеземной тканью материалов на фенолформальдегидных связующих, обладающих достаточной эрозионной стойкостью и большим значением плотности (до 1800 кг/м ).

В многослойных конструкциях теплоизоляционные слои располагают между эрозионно стойким слоем и защищаемым элементом в целях минимизации общей массы данного узла (рис. 1.5). В зависимости от уровня напряженно-деформированного состояния и температуры элементов изолятором может быть теплозащитный материал на основе каучуков, а так же низкотеплопроводный угле- и стеклопластик. Материалы герметизирующего и диффузионного слоев корпуса двигателя одновременно являются изоляторами при прогреве конструкции.

Рис. 1.5 Элементы тракта сопла:

1 – углепластик, применяемый в качестве облицовки; 2 – стеклопластик, используемый как изолятор; 3 – теплоизолятор, выполненный из ТМЗ.

Неметаллические материалы облицовок представляют собой изотропные и анизотропные композиции, состоящие из связующего (матрицы) и наполнителя. Угле- и стеклопластике имеют органическое связующее и наполнители из угольной или кремнеземной ткани. Детали тепловой защиты тракта сопла получают прессованием и намоткой. Прессованием можно получить слоистые (анизотропные) композиты.

Крупногабаритные элементы тракта (раструбы сопел) получают наметкой пропитанных связующим лент наполнителя на оправки с последующим отверждением под давлением и механической обработкой.

Графиты получают прессованием смеси каменноугольного пека (связующего) с нефтяным песком (наполнителем) с последующей графитизацией при Т>2400К.

Пирографиты получают осаждением углерода при разложении метана на поверхность графита интервале температур 2373…2673 К, и пирографит по своим свойствам приближается к свойствам монокристалла; ему присущи резкая анизотропия и экстремальные значения теплопроводности и других характеристик.

Углерод-углеродные композиционные материалы (УУКМ) имеют наполнители из углеродных и графитовых тканей и волокон (в том числе объемного плетения) и матрицу из пироуглерода. Ряд деталей получают пропиткой углеграфитового наполнителя связующим из органических смол при карбонизации заготовки, а инертной среде при температуре 1273…1373 К и уплотнении карбонизованной заготовки пироуглеродом – осаждением пленок органических веществ при температуре 1373…1473 К.

Другие детали получают наметкой или выкладкой непропитанных связующим углеграфитовых лент или волокон на оправку с последующим уплотнением пироуглеродом в печи.

Насадки - концевые части сопел с радиационным охлаждением – выполняют из сплавов на основе молибдена или ниобия, имеющих высокую температуру плавления и достаточные прочные свойства при равновесной температуре насадка, а так же они могут быть выполнены из УУКМ.

Условием работоспособности можно принять условие не разрушения элементов конструкции, и эту крайне сложную задачу разделяют на две более простые и в ряде случаев независимые друг от друга:

определение температурных полей в силовых элементах;

определение напряжений и деформаций в элементах при их силовом нагружении и сравнение с допустимыми значениями при известных температурных полях.

Для вкладыша, элементов устройств управления вектором тяги РДТТ, подверженных воздействию рабочего тела, ограничениями служат условия допустимого значения уноса. В некоторых случаях ограничение накладывается на допустимый разброс толщин унесенного слоя материалов.

1.3.2 ЗАРЯД ТВЕРДОГО ТОПЛИВА РАКЕТЫ

В ракетной технике используются различные формы зарядов твердого топлива (рис. 1.6, табл. 1.17): горящие главным образом по внутренним поверхностям (поверхности, горение которых надо предотвратить, покрыты бронирующим составом или защитно-крепящим слоем для скрепления заряда с корпусом); горящие почти по всем боковым поверхностям, например небронированные трубчатые шашки (рис. 1.7); горящие с торца.

Заряды твердого топлива изготавливаются по технологии литья под давлением, свободного вакуумного литья и методом проходного прессования.

Заряд, изготовленный методом литья, формируется либо непосредственно в корпусе РДТТ, либо в специальном каркасе, либо отдельно в специальной изложнице. Геометрия внутренней поверхности заряда формируется технологической иглой, помещенной внутри корпуса.

Технологический процесс изготовления заряда включает в себя подготовку смеси порошкообразных компонентов, подготовку связующего (вакуумирование, смешение жидких элементов, приготовление смеси связующего с алюминием), приготовление топливной массы и формование заряда, полимеризацию заряда.

При изготовлении зарядов методом литья под давлением используются смесители непрерывного действия. Приготовленная, в смесителе топливная масса транспортируется при помощи шнеков в изложницу или в корпус двигателя. Давление топливной массы в начале заполнения, равное 0,5…1,0 МПа, возрастает при стравливании в конце заполнения до 2…4 МПа.

Рис. 1.6 Формы зарядов твердого топлива

а – многошашечный;б – телескопический;в – со звездообразным каналом;г – с колесообразным каналом;д – торцевого горения;е – цилиндрический;ж – щелевой.

При свободном литье подготовка жидких компонентов и смещение топливной массы производятся в отдельных смесителях, затем масса сливается в изложницу или корпус с предварительным созданием в нем вакуума.

Процесс полимеризации производится под давлением 3…8 МПа в зависимости от конструкции заряда и двигателя при температуре 40…80 C в течение 15…25 суток. После полимеризации технологическая игла, определяющая внутреннюю конфигурацию заряда, извлекается. Литьевая технология позволяет создать конструкцию заряда из нескольких топлив (различные скорости горения, температура горения и т.д.).

Заряды изготавливаются методом проходного прессования с помощью шнека, продавливающего через пресс-форму топливную массу, которая образует наружную и внутреннюю формы поперечного сечения заряда, после чего происходит отверждение заряда.

Заряд, формируемый заливкой непосредственно в корпус и склеиваемый с внутренней поверхностью корпуса, называют скрепленным зарядом твердого топлива (см. рис. 1.1).

Вклеиваемый заряд изготавливается предварительно и затем вклеивается в корпус двигателя. Изготовление вклеиваемого заряда осуществляется в толстостенной пресс-форме с внутренним диаметром, несколько меньшим, чем у корпуса.

Рис. 1.7 Формы поперечного сечения зарядов всестороннего горения

а – одноканальные шашки;б – многоканальные;в – бесканальные.

Таблица 1.17

Характеристики зарядов различных форм

L/D

e /D

S/()

Число и форма поперечного сечения канала

Внутриканального горения

Всестороннего горения

Торцевого горения

~4L/D

~4L/D

1, звезда (см. табл. 1.18)

См. рис. 1.7

Таблица 1.18

Параметры заряда со звездообразным каналом

Число лучей звездообразного канала

Угол при вершине выступа заряда, 0,14

Коэффициент заполнения поперечного сечения дегрессивно догорающими остатками

S =const

S

Заряд, изготовленный отдельно и свободно вложенный в корпус двигателя, называют вкладным (рис. 1.8). До появления смесевых топлив единственным способом снаряжения была свободная укладка зарядов в корпус двигателя. Часть поверхности заряда бронируется.

Основные требования к бронирующему покрытию состоит в следующем:

химическая и физическая совместимость с ТРТ и стабильность в условиях эксплуатации;

хорошая адгезия к поверхности заряда;

высокая эрозионная стойкость;

низкая теплопроводность;

низкий уровень дымообразования (в случае баллистидного топлива).

В многошашечном заряде (см. рис.1.6, а) число шашек, обеспечивающих наибольшую плотность заряжания, равно n = 1 + 3(i +i ), гдеi 0,714

Конструкция заряда последних ступеней баллистических ракет должна обеспечивать возможность прекращения работы двигателя в любой момент времени полета в заданном диапазоне дальностей. Необходимо, чтобы к моменту достижения скорости, соответствующей минимальной дальности, отверстия системы отсечки тяги сообщались со свободным объемом камеры сгорания РДТТ. С этой целью в заряде могут предусматриваться специальные каналы.

В зависимости от эксплуатационных требований к РДТТ, формы заряда и механических свойств твердого топлива выбирается способ крепления заряда в корпусе РДТТ.

Преимущество скрепленного заряда заключается в том, что отсутствует теплозащитное покрытие большей части внутренней поверхности, и это способствует увеличению плотности заполнения. Стенки корпуса частично загружены от внутреннего давления зарядом на начальном этапе работы РДТТ.В двигателе отсутствуют специальные двигатели крепления заряда.

При свободной укладке заряда в корпус вводится устройство для крепления заряда в виде диафрагм (рис. 1.9), радиальных опор и кольцевых уплотнений, расположенных в зазоре между теплоизолированной стенкой корпуса двигателя и бронированной поверхностью заряда (см. рис.1.8). Система крепления заряда должна обеспечить прочную и надежную фиксацию при воздействии на заряд продольных и поперечных перегрузок и вибраций. Конструкция крепления не должна вызывать высокие локальные напряжения в заряде, которые могут нарушать его целость, вызывать местные разрушения заряда, приводящие к искажению диаграммы давления снижению полноты сгорания топлива.

Рис. 1.8 Свободновложенный заряд и узлы его крепления в корпусе:

А – передний узел;Б – задний узел.

Диафрагмы предназначаются для надежного фиксирования заряда твердого топлива в корпусе и одновременно служат колосниковой решеткой, обеспечивающей лучшее горение заряда и полное догорание его частиц в камере сгорания без выброса их из двигателя.

Радиальная опора для заряда твердого топлива может состоять из ряда тонкостенных опорных элементов или планок, которые расположены по окружности между зарядом и стенкой корпуса; опорные элементы упруго упираются в стенку корпуса и заряд, поддерживая последний по всей длине. Радиальная опора может быть выполнена также в виде плоских упругих полос, которые вставляются в зазор с предварительным напряжением.

Рис. 1.9 Диафрагмы:

а – для крепления многошашечных зарядов;б – для крепления одношашечного заряда.

Ракетное топливо - компонент веществ питания ракетного двигателя для создания им тяги и движения ракеты в заданном направлении. С развитием ракетной техники идет развитие новых видов ракетных двигателей, например ядерный ракетный двигатель, или ионный и т. д. Ракетное топливо может быть химическим (жидким и твёрдым), ядерным, термоядерным.

Жидкое ракетное топливо делится на окислитель и горючее. Эти компоненты находятся в ракете в жидком состоянии в разных баках. Смешивание происходит в камере сгорания, обычно с помощью форсунок. Давление создается за счет работы турбонасосной или вытеснительной системы. Также компоненты топлива используются для охлаждения сопла ракетного двигателя.

Также применяются так называемые ракетные монотоплива, в которых и окислителем и восстановителем является одно и то же вещество. При работе ракетного двигателя на монотопливе происходит химическая реакция самоокисления-самовосстановления, либо двигатель работает только за счёт фазового перехода вещества монотоплива, например из жидкого состояния в газообразное.

Твёрдое ракетное топливо тоже состоит из окислителя и горючего, но они находятся в смеси твёрдых веществ.

Группы

Ракетное топливо в достаточно условной мере может быть разделено на различные группы; в качестве основных групп обычно рассматриваются следующие:

  • Электрореактивные: электроэнергия и рабочие тела.
  • Ядерные: ядерное деление, синтез, распад изотопов.
  • Химические: химические реакции, реакции рекомбинации свободных радикалов.
  • Физические: потенциальная энергия сжатых газов.

Типы

Химические ракетные топлива
  • Твёрдые .
    • Нитроглицерин , динитрогликоль и другие труднолетучие растворители
    • Карбиды , нитриды , азиды и амиды металлов
  • Жидкие :
    • Несимметричный диметилгидразин (НДМГ , гептил )
Окислители для жидких видов топлива
  • Пероксиды , надпероксиды и неорганические озониды
  • органические нитросоединения и эфиры азотной кислоты (алкилнитраты)
  • Тетраоксид диазота (АТ , Амил )
  • Гелеобразное.
  • Гибридное.
Свободные радикалы
  • Рабочие тела для электрореактивных двигателей.
Ядерные топлива

Топливо космических ракет и аппаратов

Вывод космических аппаратов за пределы земной атмосферы и разгон до орбитальных скоростей требует огромных энергозатрат. Используемые в настоящее время топлива и конструкционные материалы ракет обеспечивают соотношение масс на старте и на орбите не лучше 30:1. Поэтому масса космической ракеты на старте составляет сотни и даже тысячи тонн. Отрыв такой массы от стартового стола требует превосходящей реактивной тяги двигателей . Поэтому основное требование к топливу первой ступени ракет - возможность создания значительной тяги при приемлемых габаритах двигателя и запасах топлива. Тяга прямо пропорциональна удельному импульсу и массовому расходу топлива. Т.е. топлива с высоким удельным импульсом требуется меньше для вывода на орбиту равной нагрузки. Удельный импульс обратно пропорционален молекулярному весу продуктов горения, что означает низкую плотность высокоэффективного топлива и, соответственно, значительный объем и вес конструкции двигателя и топливной системы. Поэтому при выборе топлив ищут компромисс между весом конструкции и весом топлива. На одном конце этого выбора находится топливная пара водород +кислород с наивысшим удельным импульсом и низкой плотностью. На другом конце находится твердое топливо на основе перхлората аммония с низким удельным импульсом, но высокой плотностью.

Помимо тяговых возможностей топлива, учитываются и другие факторы. Неустойчивость горения некоторых топлив зачастую приводила к взрывам двигателей. Высокая температура горения некоторых топлив предъявляла повышенные требования к конструированию, материалам и технологии двигателей. Криогенные топлива утяжеляли ракету теплоизоляцией, затрудняли выбор хладостойких материалов, усложняли проектирование и отработку. Поэтому на заре космической эры получило широкое распространение такое легкое в получении, хранении и использовании топливо как несимметричный диметилгидразин (НДМГ). При этом оно имело вполне приемлемые тяговые характеристики, поэтому довольно широко используется и в наше время.

Помимо технических факторов важны экономические, исторические и социальные. Криогенные топлива требуют дорогой сложной специфической инфраструктуры космодрома для получения и хранения криогенных материалов, таких как жидкие кислород и водород. Высокотоксичные топлива, такие как НДМГ, создают экологические риски для персонала и мест падения ступеней ракет, экономические риски последствий заражения территорий при аварийных ситуациях.

В ракетах для запуска космических аппаратов в настоящее время, в основном, используются четыре вида топлива:

  • Керосин + жидкий кислород . Популярное, дешевое топливо с великолепно развитой и отработанной линейкой двигателей и топливной инфраструктурой. Имеет неплохую экологичность. Лучшие двигатели обеспечивают удельный импульс (УИ) немногим выше 300 секунд при атмосферном давлении.
  • Несимметричный диметилгидразин + тетраоксид азота . Чрезвычайно токсичное топливо. Однако высокая устойчивость горения, относительная простота топливной арматуры, легкость хранения, хорошая плотность топлива, хорошие энергетические характеристики предопределили широкое распространение. Сегодня предпринимаются усилия по отказу от НДМГ. УИ примерно аналогичен кислород-керосиновой паре.
  • Жидкий водород + жидкий кислород. Низкая плотность и чрезвычайно низкие температуры хранения водорода делает очень сложным использование топливной пары в первой ступени ракет-носителей. Однако высокая эффективность приводит к широкому использованию в верхних ступенях ракет-носителей, где приоритет тяги уменьшается, а цена массы растет. Топливо имеет великолепную экологичность. УИ лучших двигателей на уровне моря свыше 350 секунд, в вакууме - 450 секунд.
  • Смесевое твёрдое ракетное топливо на основе перхлората аммония . Дешевое топливо, но требует высокой культуры производства. Широко используется в западном ракетостроении на первой ступени ракет благодаря легкости получения значительной тяги. Двигателями на твердом топливе сложно управлять по вектору тяги, поэтому их часто ставят в параллель с небольшими жидкостными двигателями, которые обеспечивают управляемость полета. Имеет низкую экологичность. Типовой УИ - 250 секунд.

Наблюдается также высокий интерес к перспективной топливной паре метан + жидкий кислород.

Напишите отзыв о статье "Ракетное топливо"

Примечания

Ссылки

Отрывок, характеризующий Ракетное топливо

– Они! Батюшки родимые!.. Ей богу, они. Четверо, конные!.. – кричала она.
Герасим и дворник выпустили из рук Макар Алексеича, и в затихшем коридоре ясно послышался стук нескольких рук во входную дверь.

Пьер, решивший сам с собою, что ему до исполнения своего намерения не надо было открывать ни своего звания, ни знания французского языка, стоял в полураскрытых дверях коридора, намереваясь тотчас же скрыться, как скоро войдут французы. Но французы вошли, и Пьер все не отходил от двери: непреодолимое любопытство удерживало его.
Их было двое. Один – офицер, высокий, бравый и красивый мужчина, другой – очевидно, солдат или денщик, приземистый, худой загорелый человек с ввалившимися щеками и тупым выражением лица. Офицер, опираясь на палку и прихрамывая, шел впереди. Сделав несколько шагов, офицер, как бы решив сам с собою, что квартира эта хороша, остановился, обернулся назад к стоявшим в дверях солдатам и громким начальническим голосом крикнул им, чтобы они вводили лошадей. Окончив это дело, офицер молодецким жестом, высоко подняв локоть руки, расправил усы и дотронулся рукой до шляпы.
– Bonjour la compagnie! [Почтение всей компании!] – весело проговорил он, улыбаясь и оглядываясь вокруг себя. Никто ничего не отвечал.
– Vous etes le bourgeois? [Вы хозяин?] – обратился офицер к Герасиму.
Герасим испуганно вопросительно смотрел на офицера.
– Quartire, quartire, logement, – сказал офицер, сверху вниз, с снисходительной и добродушной улыбкой глядя на маленького человека. – Les Francais sont de bons enfants. Que diable! Voyons! Ne nous fachons pas, mon vieux, [Квартир, квартир… Французы добрые ребята. Черт возьми, не будем ссориться, дедушка.] – прибавил он, трепля по плечу испуганного и молчаливого Герасима.
– A ca! Dites donc, on ne parle donc pas francais dans cette boutique? [Что ж, неужели и тут никто не говорит по французски?] – прибавил он, оглядываясь кругом и встречаясь глазами с Пьером. Пьер отстранился от двери.
Офицер опять обратился к Герасиму. Он требовал, чтобы Герасим показал ему комнаты в доме.
– Барин нету – не понимай… моя ваш… – говорил Герасим, стараясь делать свои слова понятнее тем, что он их говорил навыворот.
Французский офицер, улыбаясь, развел руками перед носом Герасима, давая чувствовать, что и он не понимает его, и, прихрамывая, пошел к двери, у которой стоял Пьер. Пьер хотел отойти, чтобы скрыться от него, но в это самое время он увидал из отворившейся двери кухни высунувшегося Макара Алексеича с пистолетом в руках. С хитростью безумного Макар Алексеич оглядел француза и, приподняв пистолет, прицелился.
– На абордаж!!! – закричал пьяный, нажимая спуск пистолета. Французский офицер обернулся на крик, и в то же мгновенье Пьер бросился на пьяного. В то время как Пьер схватил и приподнял пистолет, Макар Алексеич попал, наконец, пальцем на спуск, и раздался оглушивший и обдавший всех пороховым дымом выстрел. Француз побледнел и бросился назад к двери.
Забывший свое намерение не открывать своего знания французского языка, Пьер, вырвав пистолет и бросив его, подбежал к офицеру и по французски заговорил с ним.
– Vous n"etes pas blesse? [Вы не ранены?] – сказал он.
– Je crois que non, – отвечал офицер, ощупывая себя, – mais je l"ai manque belle cette fois ci, – прибавил он, указывая на отбившуюся штукатурку в стене. – Quel est cet homme? [Кажется, нет… но на этот раз близко было. Кто этот человек?] – строго взглянув на Пьера, сказал офицер.
– Ah, je suis vraiment au desespoir de ce qui vient d"arriver, [Ах, я, право, в отчаянии от того, что случилось,] – быстро говорил Пьер, совершенно забыв свою роль. – C"est un fou, un malheureux qui ne savait pas ce qu"il faisait. [Это несчастный сумасшедший, который не знал, что делал.]
Офицер подошел к Макару Алексеичу и схватил его за ворот.
Макар Алексеич, распустив губы, как бы засыпая, качался, прислонившись к стене.
– Brigand, tu me la payeras, – сказал француз, отнимая руку.
– Nous autres nous sommes clements apres la victoire: mais nous ne pardonnons pas aux traitres, [Разбойник, ты мне поплатишься за это. Наш брат милосерд после победы, но мы не прощаем изменникам,] – прибавил он с мрачной торжественностью в лице и с красивым энергическим жестом.
Пьер продолжал по французски уговаривать офицера не взыскивать с этого пьяного, безумного человека. Француз молча слушал, не изменяя мрачного вида, и вдруг с улыбкой обратился к Пьеру. Он несколько секунд молча посмотрел на него. Красивое лицо его приняло трагически нежное выражение, и он протянул руку.
– Vous m"avez sauve la vie! Vous etes Francais, [Вы спасли мне жизнь. Вы француз,] – сказал он. Для француза вывод этот был несомненен. Совершить великое дело мог только француз, а спасение жизни его, m r Ramball"я capitaine du 13 me leger [мосье Рамбаля, капитана 13 го легкого полка] – было, без сомнения, самым великим делом.
Но как ни несомненен был этот вывод и основанное на нем убеждение офицера, Пьер счел нужным разочаровать его.
– Je suis Russe, [Я русский,] – быстро сказал Пьер.
– Ти ти ти, a d"autres, [рассказывайте это другим,] – сказал француз, махая пальцем себе перед носом и улыбаясь. – Tout a l"heure vous allez me conter tout ca, – сказал он. – Charme de rencontrer un compatriote. Eh bien! qu"allons nous faire de cet homme? [Сейчас вы мне все это расскажете. Очень приятно встретить соотечественника. Ну! что же нам делать с этим человеком?] – прибавил он, обращаясь к Пьеру, уже как к своему брату. Ежели бы даже Пьер не был француз, получив раз это высшее в свете наименование, не мог же он отречься от него, говорило выражение лица и тон французского офицера. На последний вопрос Пьер еще раз объяснил, кто был Макар Алексеич, объяснил, что пред самым их приходом этот пьяный, безумный человек утащил заряженный пистолет, который не успели отнять у него, и просил оставить его поступок без наказания.
Француз выставил грудь и сделал царский жест рукой.
– Vous m"avez sauve la vie. Vous etes Francais. Vous me demandez sa grace? Je vous l"accorde. Qu"on emmene cet homme, [Вы спасли мне жизнь. Вы француз. Вы хотите, чтоб я простил его? Я прощаю его. Увести этого человека,] – быстро и энергично проговорил французский офицер, взяв под руку произведенного им за спасение его жизни во французы Пьера, и пошел с ним в дом.
Солдаты, бывшие на дворе, услыхав выстрел, вошли в сени, спрашивая, что случилось, и изъявляя готовность наказать виновных; но офицер строго остановил их.
– On vous demandera quand on aura besoin de vous, [Когда будет нужно, вас позовут,] – сказал он. Солдаты вышли. Денщик, успевший между тем побывать в кухне, подошел к офицеру.
– Capitaine, ils ont de la soupe et du gigot de mouton dans la cuisine, – сказал он. – Faut il vous l"apporter? [Капитан у них в кухне есть суп и жареная баранина. Прикажете принести?]
– Oui, et le vin, [Да, и вино,] – сказал капитан.

Французский офицер вместе с Пьером вошли в дом. Пьер счел своим долгом опять уверить капитана, что он был не француз, и хотел уйти, но французский офицер и слышать не хотел об этом. Он был до такой степени учтив, любезен, добродушен и истинно благодарен за спасение своей жизни, что Пьер не имел духа отказать ему и присел вместе с ним в зале, в первой комнате, в которую они вошли. На утверждение Пьера, что он не француз, капитан, очевидно не понимая, как можно было отказываться от такого лестного звания, пожал плечами и сказал, что ежели он непременно хочет слыть за русского, то пускай это так будет, но что он, несмотря на то, все так же навеки связан с ним чувством благодарности за спасение жизни.
Ежели бы этот человек был одарен хоть сколько нибудь способностью понимать чувства других и догадывался бы об ощущениях Пьера, Пьер, вероятно, ушел бы от него; но оживленная непроницаемость этого человека ко всему тому, что не было он сам, победила Пьера.